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EXECUTIVE SUMMARY 

Ligand binding studies with nicotinic acetylcholine receptor on the fiber optic biosensor 
indicate that while K; values for antagonists were similar to those obtained in membrane binding 
assays, the agonists appear much less potent. This may be due to the inability of the receptor 
to make appropriate conformational changes necessary for agonist binding. Further studies on 
the Light Addressable Potentiometric Sensor, in which receptor proteins are immobilized using 
antibodies as spacer molecules, have shown greater agonist binding affinity than obtained on the 
fiber optic biosensor. To test whether spacer arms increase the conformational freedom of 
receptor protein immobilized on fibers, the nAChR was tethered to the fiber using an anti- 
nAChR antibody. In our present studies, rat anti-nAChR antibodies were immobilized onto the 
quartz fibers. The antibody-loaded fibers were then incubated in purified nAChR, and probed 
with a fluorescein-labeled ligand. The Kj values for antagonists were similar to those from 
previous studies, while the Kj values for acetylcholine and carbamylcholine were at least one 
order of magnitude lower than previously reported. With the exception of alpha-naja toxin, the 
values derived from the potentiometric sensor were two orders of magnitude lower than values 
obtained from the fiber optic biosensor. 
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SENSITIVITY INCREASE IN NICOTINIC ACETYLCHOLINE 
RECEPTOR BINDING ON FIBER OPTIC WAVE GUIDE 

1. INTRODUCTION 

Biosensors are analytical devices that quantitatively detect the presence of specific 
chemicals, toxins, or organisms in various media. The biological binding events of biomolecules 
immobilized onto transductive devices are converted into electrical or optical signals. The fiber 
optic evanescent wave sensor has been demonstrated to be sensitive in detection using 
neuroreceptors, antibodies and enzymes0 3). This sensor detects molecules within the evanescent 
wave zone which extends only a fraction of a wavelength above the surface of the fiber. 
Binding events on the surface of the fiber are easily monitored without interference from the 
bulk solution. Excitation of fluorophores occurs when some of the light transmitted down the 
fiber enters the evanescent zone. Fluorophore emission at a higher wavelength is trapped in the 
fiber and is transmitted back through the fiber to a detector. 

With the establishment of proof of principle of biosensors comes the necessity of 
refinement in the areas of size, specificity, stability, and sensitivity. Many chemical vapor 
sensors are available as handheld instruments, but the downsizing of biosensors remains future. 
Requisite specificity in antibody-based biosensors is provided by monoclonal antibodies, while 
neuroreceptors are useful for more generic sensing within a class of compounds. The stability 
of biomolecules has been increased by covalent immobilization involving silanes and 
crosslinkers, use of polyphenylurethane linkages, and by drying in solutions of trehalose(46). 
Biosensor sensitivity has been improved by the development of the Light Addressable 
Potentiometric Sensor (LAPS), the surface plasmon resonance instrument, and the use of tapered 
fibers in laser-driven waveguides'7"9*. 

Previous ligand binding studies with nicotinic acetylcholine receptor (nAChR) on 
the fiber optic sensor indicated that while Kj values for antagonists were similar to those obtained 
in membrane binding assays, the agonists appeared much less potent. This may be due to the 
inability of the directly immobilized receptor to make appropriate conformational changes 
necessary for agonist binding. Published studies on the LAPS, in which receptor proteins were 
immobilized using antibodies as spacer molecules, have shown greater agonist binding affinity 
than obtained on the fiber optic sensor10. 

To test whether spacer arms increase the conformational freedom of receptor 
protein immobilized on the fiber optic sensor, the nAChR was tethered to the fiber using an anti- 
nAChR antibody. This study focused on the nAChR of the neuromuscular junction as the 
molecular recognition element of a biosensor since it has been most extensively characterized 
and is readily purified in milligram quantities from the Torpedo electric organ. The interaction 
between nAChR immobilized on quartz optic fibers and nicotinic receptor agonists and 
antagonists was measured using the principles of total internal reflection extrinsic fluorescence 
spectroscopy11 using a fluorescent ligand to probe receptor interactions. 
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2. MATERIALS AND METHODS 

2.1 Preparation of Biochemicals 

The nAChR from Torpedo electric organ was purified as previously described02'. 
Briefly, Triton X-100 extracts of electric organ were mixed with a Naja a-neurotoxin (NTX) 
linked Sepharose gel and the bound nAChR eluted with 1 M carbamylcholine. The receptor was 
then extensively dialyzed against 5 mM Tris buffer, pH 7.2 to remove the carbamylcholine and 
detergent. The purified receptor was stored frozen at -70° C until use. Monoclonal antibodies 
(mAb) to nAChr were produced by hybridoma mAb35 from American Type Culture Collection 
(Rockville, MD). This hybridoma secretes a Rat IgGl antibody (Ab) that binds to the receptor 
without interfering with the binding sites. Anti-rat Ab and other biochemicals were purchased 
from Sigma Chemicals (St. Louis, MO). 3-aminopropyltriethoxysilane (APTES) was purchased 
from Pierce (Rockford, IL). The fluorescent probe, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene 
labeled a-bungarotoxin (BODIPY®-BGTx) was purchased from Molecular Probes (Eugene OR). 
BODIPY® is a yellow-green fluorescent dye with an absorbance and quantum yield slightly 
higher than fluorescein, its fluorescence is not pH sensitive nor is it quenched in water. 

2.2 Apparatus 

A fiber optic evanescent wave sensor, designed and built at ORD, Inc. (North 
Salem, NH) was used for all experimentation. This instrument included a 10-W Welch Allyn 
quartz halogen lamp, a Hamamatsu S-1087 silicon detector, an Ismatec fixed speed peristaltic 
pump, a strip chart recorder and band-pass filters and lenses as indicated in the schematic 
(Figure 1). The quartz fibers, 1 mm in diameter with polished ends, were obtained from ORD, 
Inc. 
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Figure 1.   Schematic Presentation of Optical System Used to Measure Fluorescence. 
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The sensor makes use of the evanescent wave effect by exciting a fluorophore just 
outside the waveguide boundary (excitation wavelength = 485/20 nm). A portion of the 
resultant fluorophore emission is trapped in the waveguide and is transmitted back up the fiber. 
This emitted wavelength is detected after transmission through 510 long pass and 530/30 nm 
filters. The flow cell allowed the center 47 mm of a 60 mm long fiber to be immersed in 46 
p\ which was exchanged every 14 sec. 

2.3 Preparation of Fibers 

Prior to silanization, quartz fibers were acid cleaned by immersion in a 
concentrated hydrochloric acid/methanol (1:1) solution for 30 min, followed by several rinses 
in distilled water. After washing, the fibers were soaked in concentrated sulfuric acid for 30 
min and rinsed in distilled water. Fibers were then boiled 30 min in distilled water to remove 
any remaining acid and dried on a lint free cloth. Cleaned fibers were incubated (90° C, 10 
min) in 10% v/v APTES in ethanol. Following incubation, the fibers were washed with distilled 
water and dried overnight in a 115° C oven. Silanized fibers were then activated by incubating 
in glutaraldehyde (3%) for 90 min, followed by incubation in 50 pg/ml solution of anti-rat Ab 
in phosphate-buffered saline (PBS) (pH 7.4) for 30 min. The anti-rat Ab loaded fibers were then 
incubated in rat anti-nAChR serum for 24 hrs, followed by a 4 hr incubation in purified nAChR 
(50 /ig/ml in citrate buffer pH 5.0).   All incubations were carried out at 4° C. 

2.4 Fluorescence Meaurements 

After immobilizing the receptors, the fiber was placed in the flow cell of the 
instrument and perfused for 5 min with PBS containing 0.5 mg/ml casein (PBS/cas) to eliminate 
nonspecific binding. The fiber was then perfused with 100 nM BODIPY®-BGTX in PBS/cas 
and competing ligands as specified in the results. Between experiments, the flow cell was 
washed in 1% sodium dodecyl sulfate (SDS) for 2 min followed by PBS for 10 min. 

3. RESULTS 

Previous fiber optic sensor studies were performed with nAChR directly 
immobilized onto the fiber (Figure 2a). Incubation of the antibody-coated fiber and receptor 
yielded a complex tethered configuration of anti-rat/anti-nACHr/nACHr (Figure 2b). The 
LAPS studies previously mentioned used a biotin-BGTx/carboxyfluorescein-nAChR complex 
(Figure 2c). The binding event of BODIPY®-BGTx to the nACHr was optically detected and 
plotted as millivolt/min. Initial rates were determined graphically from tracing of the millivolt 
response vs time, and response was measured as percent of maximum initial rate. 
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Figure 2.  Schematics of Receptor Immobilization 

The addition of increasing molar concentrations of agonist to the BODIPY®-BGTx 
solution reduced the initial rate in a dose-dependent manner (Figure 3). Antagonists d- 
tubocurarine and Naja a-neurotoxin also reduced the response in a dose-dependent manner 
(Figure 4). The ICJ0 values (the ligand concentration that inhibited the maximum signal by 50%) 
of the agonists and antagonists were determined by Log-Probit analysis. K; values were 
determined by the relationship K; = IC50/ (I + [L]/ KJ, where L is the concentration of the 
fluorescent tag. The K; values for antagonists were similar to those from previous studies, while 
the K; values for acetylcholine and carbamylcholine were at least one order of magnitude lower 
than previously reported. With the exception of Naja a-neurotoxin, the values derived from the 
LAPS were two orders of magnitude lower than values obtained from the fiber optic biosensor 
(Table 1). 

4 



80 

u> 
CO (0 
E 
9 
E 
a 40 

2 
^ 20 

-Log Agonists (M) 

Figure 3.  Competition of BODIPY-BGTx with nAChR Agonists. 
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Figure 4.  Competition of BODIPY-BGTx with nAChR antagonists. 



Table.   Fiber Optics 

Fiber-optic 
biosensor, 
tethered 
K|<M) 

Fiber-optic 
biosensor 

Ki(M) 10 

LAPS 
biosensor 

K,(M) 10 

Agonists 
Acetylcholine 
Carbamylcholine 
Nicotine 
Succinylcholine 

Antagonists 
5-Tubocurarine 
a-Naja toxin 

4.7 x 10-7 

7.8 x 10"5 

3.5 x 10^ 
2.2 x 10"5 

4.0 x 10"6 

3.1 x 10"10 

1.2 x 10"5 

4.5 x 10-3 

6.0 x 10"5 

2.4 x 10"5 

8.8 x 10'6 

1.0 x 10"8 

2.9X.10"8 

4.6 x 10"7 

4.4 x 10"6 

9.0 x lO"7 

2.1 x lO"7 

1.2 x 10"8 

4. CONCLUSIONS 

The optical signal generated by BODIPY®-BGTx association with nAChR 
tethered fibers exhibits dose-dependent inhibition by both nicotinic agonists and antagonists. 
While the K; values for antagonists are similar to those obtained in membrane binding assays, 
the agonists appear less potent in competing with the neurotoxins in the fiber optic sensor than 
in membrane assays; however, the nAChR tethered onto quartz fibers binds agonists with greater 
sensitivity than nAChR directly adsorbed onto the fiber. This suggests that conformational 
freedom in the receptor complex is increased in the tethered state. 
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